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STRAIN AND THE TRANSFORMATION OF STRAIN 

INTRODUCTION - DEFORMABLE BODY MOTION 

1) Rigid Body Motion 
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Figure 1:  General Plane Motion (Translation and Rotation) 

Figure 1 shows the general plane motion of a rigid body consisting of a translation, where all 

points on the body have the same displacement (Tx,Ty), and a rotation, where all lines on the 

body have the same rotation (Rz).  In rigid body motion, no line changes length nor is there a 

change in the angle between any two lines. 

2) Deformation and Strain 
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Figure 2:  Deformable Body Motion (Strain) 

Figure 2 shows the plane deformation of a body.  This motion involves a change of volume, 

direct (normal) strain, and a change of shape, shear strain.  Direct strain represents a change 

in length of a line and shear strain represents a change in angle between lines.  In Figure 2, 

direct strain is demonstrated by the change in length of line OB to OB’ and shear strain is 

demonstrated by the change in angle COA to C’OA’. 

As strain displacements may vary from point to point (and line to line) strain is defined as a 

measure of relative displacement.  e.g. In Figure 2 the average direct strain is given by u/OA 

in the x direction and v/OC in the y direction.  The average shear strain is given by 

(A+C)/COA. 

3) Energy 

When a deformable body is acted upon by forces it moves.  This motion may consist of both 

rigid body motion and deformation. Rigid body motion is associated with kinetic energy and 

gravitational potential energy and deformation is associated with strain potential energy. 
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INFINITESIMAL STRAIN 

1) Direct (Normal) Strain 

Figure 3 shows a line element in a body and the change 

in length of this line represents direct strain.  

Engineering direct strain is defined as: 

  

change in length

original length

L

L o

 

In general, strain is not uniform over a finite length so engineering direct strain is defined by 

the extension of an elemental length. i.e. 

  
 

L

L







L0

 

If u and v are the displacements in the x and y directions, the engineering direct strain is 

defined as: 

 
  
x 

du

dx
y 

dv

dy
............................................................ (1) 

2) Shear Strain 
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Figure 4:  Shear Strain and Rotation 

Figure 4 shows deformations involving the rotation of lines in an element.  Figure 4a and 4b 

show two examples of shear strain but in Figure 4c, although there is rotation of a line, there 

is no shear action.  There is thus a need to distinguish between the shear rotation of a line and 

the rigid body rotation of a line.  This is achieved by defining shear strain by the change in 

angle between two orthogonal lines as shown in Figure 4d. 

The angle xy is known as tensor shear strain and xy is known as engineering shear strain 

where: 

 xy = 2xy ................................................................................ (2) 

Note that Figure 4a represents tensor shear strain xy = xy/2 with a clockwise rotation of  = 

xy/2. Figure 4b also represents tensor shear strain xy = xy/2 but with a counter-clockwise 

rotation of  = xy/2.  Shear strain is positive when there is an extension of the diagonal with 

positive slope.  The shear strain shown in Figure 4d is positive. 

L ²L

L
o

 

Figure 3:  Direct Strain 
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PRINCIPAL STRAINS 

When a body deforms there will always be elements 

defined by orthogonal axes which do not undergo 

shear deformation.  The axes defining these 

elements are the principal axes and the strains in 

these directions are the principal strains.  It can be 

shown that the principal strains are the maximum 

and minimum direct strains. 

e.g.  In Figure 5 the square aligned with the xy axes 

(ABCD) is subjected to pure shear but the diagonals 

of this square do not rotate.  Therefore the sides of a 

square aligned with the 12 axes (abcd) do not rotate 

and the abcd square is subjected to normal strains 

but not shear strain.  As shown below, it is possible 

to use these principal strains to obtain the strains in 

any other direction. 

Transformation of Strain 

In Figure 6, line OB on the element aligned with 

the (principal) 12 axes extends and rotates to OB’.  

For this line, the shear and normal strain in the x 

directions are thus given by: 

  
xy 

BC

OB
x 

CB'

OB
 

In the 12 directions, the (principal) strains are 

given by: 

  
1 

BA

OD
2 

AB'

DB
 

The displacement of OB can therefore be written in 

terms of the strains in both the xy and the 12 

directions: 

i.e. 
  
vector BB'  1  2  x  y

 

where: 

  

1  BA  OD 1  OB cos 1

2  AB'  DB2  OB sin 2

 

 

and: 

  

 x  CB'  OBx  1 x
 2 x  OB cos

2
1  OB sin

2
2

 y  BC  OBxy  1 
y
 2 

y
 OB cos sin 1  OB sin cos 2

 

Leading to: 

   x  1 cos
2
  2 sin

2
  ............................................................... (3) 

 
  
xy   1  2 cos sin  ............................................................... (4) 
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Figure 5:  Pure Shear and Principal Axes 
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Figure 6:  Transformation of Strain 
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Substituting 

  
cos

2
, sin

2
 

1

2
1  cos 2 , cos  sin 

1

2
sin 2  

gives: 

 
  
x 

1  2

2

1  2

2
cos 2............................................................ (5) 

 
  
xy  

1

2
1  2 sin 2 .................................................................. (6) 

As with the transformation of stress, Eqns. (5) and (6) are the parametric equations of a circle 

known as Mohr’s circle of strain. 
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Figure 7:  Mohr’s Circle of Strain 

From Figure 7 it can be seen that the maximum shear strain occurs on planes which are ±45° 

from the principal planes and that the maximum shear strain is given by: 

 
  
xy ma x


1  2 

2
 ........................... (7) 

On the planes of maximum shear both direct strains are (x + y)/2.  Mohr’s circle also shows 

that for all orthogonal planes, the sum of the direct strains is a constant: 

 
  
x  y  1 2  ............................ (8) 
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HOOKE’S LAW AND ELASTIC CONSTANTS 

1) Young’s Modulus and Modulus of Rigidity 

Consider a body subjected to simple tension where: 

  1  x 2  3  0  

From Hooke’s law for plane strain (and a linear material) the 

principal strains are: 

  

1 
1

E
1  2  3  

x

E

2 
1

E
2  3  1  

x

E

 

and the maximum shear strain is: 

  
xy max


1  2 

2


x  x  
2 E


1  

2 E
x 

xy max

2

xy max

2G
 

From Mohr’s circle for stress, the maximum shear stress is given by: 

  
 xymax

 1  2 / 2  x / 2  

so we have:   
  

1  

2E
x 

x / 2

2G
 

and hence:  

  

G 
E

2 1   
.......................................................... (9) 

2) Dilation and Bulk Modulus 

Dilation (e) is the change of volume per unit volume and bulk modulus 

(K) is a volume stiffness defined by uniform pressure (p)/e. 

i.e.  
  
e 

 vol

Vol
K 

p

e
 

When a body is subjected to a general state of stress it can be shown 

that the dilation is given by: 

  
e  1  2 3  

and in a state of uniform pressure, the principal stresses are: 

  1  2  3  p  

Using Hooke’s law, the dilation for this state of stress is: 

  
e 

1

E
1   2  3   2   3 1   3   2  1    3p

E
1  2   

Hence: 

  

  

K 
p

e


E

3 1  2 
 ........................................................... (10) 

x

 

Figure 8: Simple Tension 
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ELECTRICAL RESISTANCE STRAIN GAUGES 

The electrical resistance, R, of a length of wire is given by R = L/A  where  = resistivity,  

L = length and A = cross sectional area.  If the length of the wire changes there will be a 

change in resistance and this property is used to measure strain.  The most common strain 

gauges are manufactured from foil bonded to a non-conductive backing.  The gauge is then 

bonded to the test material.  As shown in Figure 11, gauges are typically formed by a number 

of "loops" which are elongated (or shortened) by the direct strain . 

Note that the area of the foil at the ends of 

each "loop" is greater than the nominal 

area.  This reduces the gauge's transverse 

resistance thus reducing the gauge’s 

sensitivity to transverse strain. 

In addition to strain, environmental 

effects, especially variations in temperature, will also change a gauge's resistance.  Some 

gauges have thermal properties that match those of the test material and these gauges do not 

require any allowance to be made for temperature changes.  However, there is usually a limit 

on the range of operating temperatures and test materials for such gauges.  These limitations 

can be overcome by the use of a "dummy" gauge.  The dummy gauge is bonded to a sample 

of the same material as the test material and then subjected to the same environment, but not 

the same loads, as the "active" gauge. 

The change in resistance of a gauge is therefore given by: 

  

dR

R


dR

R









dR

R







T

 K 
dR

R







T

 

where: 

 

  

dR

R








 change in R due to strain developed by load

dR

R







T

 change in R due to environmental effects

K = "gauge factor"

 = (direct) strain developed by the load

 

Typically, the small change in a gauge’s resistance is detected by a strain gauge amplifier 

which measures the potential difference across a "balanced" Wheatstone Bridge. 

 

 

Figure 11: Resistance Strain Gauge 
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The Wheatstone Bridge 

The voltage detected by the bridge is given by: 

  

E  V
R1R 3  R 2R 4

R1  R 3 R 3  R 4 
 

When R1R3 = R2R4, E = 0 and the bridge is said to be balanced.  

In the balanced condition: 

  

R 2

R1


R 3

R 4

 r  (say)  

and a small change in resistance, dR, will produce a small 

change in voltage, dE, where: 

 

  

dE

V


r

1  r 
2

dR 1

R1


dR 2

R 2


dR 3

R 3


dR 4

R 4








 

The Quarter Bridge 

For strain gauge applications it is common to make R1 the active gauge, R2 the dummy gauge 

and R3 and R4 standard resistors with R3 = R4 so that r = 1.  This arrangement is known as a 

quarter bridge whereby: 

  

dR1

R1

 K 
dR

R







T

;
dR 2

R2


dR

R







T

; dR 3  dR 4  0  

  

dE

V


1

(1 1)
2 K 

dR

R







T


dR

R







T

0 0








K

4
 

giving:  
  
 meas 

4

K

dE

V
  .................................... (10) 

The strain gauge amplifier indicates strain by measuring dE with the factor of 4 included in 

the output.  The amplifier also requires an input value for the gauge factor.  For most foil 

gauges the gauge factor is approximately equal to 2.  If the amplifier gauge factor setting is 

different to the actual gauge factor, the true strain is given by: 

   

  

 true   meas

Ksetting

K true

  ............................. (11) 

Half and Full Bridges 

In some applications, where 1 = -2, it is possible to use two active gauges (half bridge).  In 

this configuration: 

  

dR1

R1

 K 
dR

R







T

;
dR 2

R2

 K 
dR

R







T

; dR 3  dR 4  0  

  

dE

V


1

(1 1)
2 K 

dR

R







T

 K 
dR

R







T




 


 0  0










K

2
 

and the true strain is given by: 

  

 true 
 

meas

2

Ksetting

Ktrue

 ............................. (12) 

R 1 R 2

R 4 R 3

E

V  

Figure 12:  A Wheatstone 

Bridge 
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If 1 = -2, it is also possible to use four active gauges (full bridge) with dR1 and dR3 

indicating 1 and dR2 and dR4 indicating 2 so that: 

  

dR1

R1


dR 3

R3

 K 
dR

R







T

;
dR 2

R 2


dR 4

R 4

 K 
dR

R







T

 

  

dE

V


1

4
2 K 

dR

R







T




 


 2 K 

dR

R







T




 










 K  

and:   

  

 true 
 meas

4

Ksetting

K true

 ............................................ (13) 

Strain Gauge Rosettes 

The complete state of strain at a point can be measured by an 

arrangement of three strain gauges.  The most common 

arrangement is the rectangular rosette shown in Figure 13. 

This rosette measures three direct strains 0, 45 and 90.  If the 0 

gauge is taken to be aligned with the x axis then the 

transformation of strain equation1 gives: 

  0  x  
  
45  x

1

2
 y

1

2
  xy

1

2
 

  
90  y  

giving 
  
 xy  245  0  90  

Assuming plane stress conditions (3 = 0) and applying Hooke’s 

law, the strains are: 

  
x 

1

E
x  y ;  y 

1

E
y  x ; xy 

1

G
 xy

 

Rearranging in favour of stress gives: 

  

x 
E

1  2 
x  y ; y 

E

1  2 
 y  x ; xy  G xy

 

Substituting the measured values yields: 

  

x 
E

1  2 
0  90 ; y 

E

1  2 
90  0 ; xy  G 245  0  90  ..... (14) 

                                                 

1  
  
x '  x cos

2
  y sin

2
  xy sin cos  

45

90

0

45°

x

y

 

Figure 13:  The Rectangular 

Rosette 


